Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Am J Obstet Gynecol ; 2022 Jul 19.
Article in English | MEDLINE | ID: covidwho-2238845

ABSTRACT

BACKGROUND: Although emerging data during the SARS-CoV-2 pandemic have demonstrated robust messenger RNA vaccine-induced immunogenicity across populations, including pregnant and lactating individuals, the rapid waning of vaccine-induced immunity and the emergence of variants of concern motivated the use of messenger RNA vaccine booster doses. Whether all populations, including pregnant and lactating individuals, will mount a comparable response to a booster dose is not known. OBJECTIVE: This study aimed to profile the humoral immune response to a COVID-19 messenger RNA booster dose in a cohort of pregnant, lactating, and nonpregnant age-matched women. STUDY DESIGN: This study characterized the antibody response against ancestral Spike and Omicron in a cohort of 31 pregnant, 12 lactating, and 20 nonpregnant age-matched controls who received a BNT162b2 or messenger RNA-1273 booster dose after primary COVID-19 vaccination. In addition, this study examined the vaccine-induced antibody profiles of 15 maternal-to-cord dyads at delivery. RESULTS: Receiving a booster dose during pregnancy resulted in increased immunoglobulin G1 levels against Omicron Spike (postprimary vaccination vs postbooster dose; P=.03). Pregnant and lactating individuals exhibited equivalent Spike-specific total immunoglobulin G1, immunoglobulin M, and immunoglobulin A levels and neutralizing titers against Omicron compared with nonpregnant women. Subtle differences in Fc receptor binding and antibody subclass profiles were observed in the immune response to a booster dose in pregnant vs nonpregnant individuals. The analysis of maternal and cord antibody profiles at delivery demonstrated equivalent total Spike-specific immunoglobulin G1 in maternal and cord blood, yet higher Spike-specific FcγR3a-binding antibodies in the cord relative to maternal blood (P=.002), consistent with the preferential transfer of highly functional immunoglobulin. Spike-specific immunoglobulin G1 levels in the cord were positively correlated with the time elapsed since receiving the booster dose (Spearman R, .574; P=.035). CONCLUSION: Study data suggested that receiving a booster dose during pregnancy induces a robust Spike-specific humoral immune response, including against Omicron. If boosting occurs in the third trimester of pregnancy, higher Spike-specific cord immunoglobulin G1 levels are achieved with greater time elapsed between receiving the booster and delivery. Receiving a booster dose has the potential to augment maternal and neonatal immunity.

2.
Vaccines (Basel) ; 10(4)2022 Mar 23.
Article in English | MEDLINE | ID: covidwho-1822452

ABSTRACT

Emergent SARS-CoV-2 variants and waning humoral immunity in vaccinated individuals have resulted in increased infections and hospitalizations. Children are not spared from infection nor complications of COVID-19, and the recent recommendation for boosters in individuals ages 12 years or older calls for broader understanding of the adolescent immune profile after mRNA vaccination. We tested the durability and cross-reactivity of anti-SARS-CoV-2 serologic responses over a six-month time course in vaccinated adolescents against the SARS-CoV-2 D614G ("wild type") and Omicron antigens. Serum from 77 adolescents showed that anti-Spike antibodies wane significantly over six months. After completion of a two-vaccine series, cross-reactivity against Omicron-specific receptor-binding domain (RBD) was seen. Functional humoral activation against wild type and Omicron SARS-CoV-2 also declines over time in vaccinated adolescent children. Evidence of waning mRNA-induced vaccine immunity underscores vulnerabilities in long-term pediatric protection against SARS-CoV-2 infection, while cross-reactivity highlights the additional benefits of vaccination. Characterization of adolescent immune signatures post-vaccination will inform guidance on vaccine platforms and timelines, and ultimately optimize immunoprotection of children.

3.
Sci Transl Med ; 13(617): eabi7428, 2021 Oct 27.
Article in English | MEDLINE | ID: covidwho-1476378

ABSTRACT

There is a persistent bias toward higher prevalence and increased severity of coronavirus disease 2019 (COVID-19) in males. Underlying mechanisms accounting for this sex difference remain incompletely understood. Interferon responses have been implicated as a modulator of COVID-19 disease in adults and play a key role in the placental antiviral response. Moreover, the interferon response has been shown to alter Fc receptor expression and therefore may affect placental antibody transfer. Here, we examined the intersection of maternal-fetal antibody transfer, viral-induced placental interferon responses, and fetal sex in pregnant women infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Placental Fc receptor abundance, interferon-stimulated gene (ISG) expression, and SARS-CoV-2 antibody transfer were interrogated in 68 human pregnancies. Sexually dimorphic expression of placental Fc receptors, ISGs and proteins, and interleukin-10 was observed after maternal SARS-CoV-2 infection, with up-regulation of these features in placental tissue of pregnant individuals with male fetuses. Reduced maternal SARS-CoV-2­specific antibody titers and impaired placental antibody transfer were also observed in pregnancies with a male fetus. These results demonstrate fetal sex-specific maternal and placental adaptive and innate immune responses to SARS-CoV-2.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Female , Humans , Immunity , Infectious Disease Transmission, Vertical , Placenta , Pregnancy , SARS-CoV-2
4.
J Clin Invest ; 131(14)2021 07 15.
Article in English | MEDLINE | ID: covidwho-1311202

ABSTRACT

BACKGROUNDWeeks after SARS-CoV-2 infection or exposure, some children develop a severe, life-threatening illness called multisystem inflammatory syndrome in children (MIS-C). Gastrointestinal (GI) symptoms are common in patients with MIS-C, and a severe hyperinflammatory response ensues with potential for cardiac complications. The cause of MIS-C has not been identified to date.METHODSHere, we analyzed biospecimens from 100 children: 19 with MIS-C, 26 with acute COVID-19, and 55 controls. Stools were assessed for SARS-CoV-2 by reverse transcription PCR (RT-PCR), and plasma was examined for markers of breakdown of mucosal barrier integrity, including zonulin. Ultrasensitive antigen detection was used to probe for SARS-CoV-2 antigenemia in plasma, and immune responses were characterized. As a proof of concept, we treated a patient with MIS-C with larazotide, a zonulin antagonist, and monitored the effect on antigenemia and the patient's clinical response.RESULTSWe showed that in children with MIS-C, a prolonged presence of SARS-CoV-2 in the GI tract led to the release of zonulin, a biomarker of intestinal permeability, with subsequent trafficking of SARS-CoV-2 antigens into the bloodstream, leading to hyperinflammation. The patient with MIS-C treated with larazotide had a coinciding decrease in plasma SARS-CoV-2 spike antigen levels and inflammatory markers and a resultant clinical improvement above that achieved with currently available treatments.CONCLUSIONThese mechanistic data on MIS-C pathogenesis provide insight into targets for diagnosing, treating, and preventing MIS-C, which are urgently needed for this increasingly common severe COVID-19-related disease in children.


Subject(s)
COVID-19/etiology , COVID-19/physiopathology , Haptoglobins/physiology , Intestinal Mucosa/physiopathology , Protein Precursors/physiology , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/etiology , Systemic Inflammatory Response Syndrome/physiopathology , Adolescent , Antigens, Viral/blood , Biomarkers/blood , COVID-19/virology , Case-Control Studies , Child , Child, Preschool , Female , Haptoglobins/antagonists & inhibitors , Humans , Infant , Infant, Newborn , Intestinal Mucosa/drug effects , Intestinal Mucosa/virology , Male , Oligopeptides/pharmacology , Permeability/drug effects , Proof of Concept Study , Protein Precursors/antagonists & inhibitors , Protein Precursors/blood , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/blood , Spike Glycoprotein, Coronavirus/immunology , Systemic Inflammatory Response Syndrome/virology , Young Adult
7.
JAMA Netw Open ; 3(12): e2030455, 2020 12 01.
Article in English | MEDLINE | ID: covidwho-985883

ABSTRACT

Importance: Biological data are lacking with respect to risk of vertical transmission and mechanisms of fetoplacental protection in maternal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Objective: To quantify SARS-CoV-2 viral load in maternal and neonatal biofluids, transplacental passage of anti-SARS-CoV-2 antibody, and incidence of fetoplacental infection. Design, Setting, and Participants: This cohort study was conducted among pregnant women presenting for care at 3 tertiary care centers in Boston, Massachusetts. Women with reverse transcription-polymerase chain reaction (RT-PCR) results positive for SARS-CoV-2 were recruited from April 2 to June 13, 2020, and follow-up occurred through July 10, 2020. Contemporaneous participants without SARS-CoV-2 infection were enrolled as a convenience sample from pregnant women with RT-PCR results negative for SARS-CoV-2. Exposures: SARS-CoV-2 infection in pregnancy, defined by nasopharyngeal swab RT-PCR. Main Outcomes and Measures: The main outcomes were SARS-CoV-2 viral load in maternal plasma or respiratory fluids and umbilical cord plasma, quantification of anti-SARS-CoV-2 antibodies in maternal and cord plasma, and presence of SARS-CoV-2 RNA in the placenta. Results: Among 127 pregnant women enrolled, 64 with RT-PCR results positive for SARS-CoV-2 (mean [SD] age, 31.6 [5.6] years) and 63 with RT-PCR results negative for SARS-CoV-2 (mean [SD] age, 33.9 [5.4] years) provided samples for analysis. Of women with SARS-CoV-2 infection, 23 (36%) were asymptomatic, 22 (34%) had mild disease, 7 (11%) had moderate disease, 10 (16%) had severe disease, and 2 (3%) had critical disease. In viral load analyses among 107 women, there was no detectable viremia in maternal or cord blood and no evidence of vertical transmission. Among 77 neonates tested in whom SARS-CoV-2 antibodies were quantified in cord blood, 1 had detectable immunoglobuilin M to nucleocapsid. Among 88 placentas tested, SARS-CoV-2 RNA was not detected in any. In antibody analyses among 37 women with SARS-CoV-2 infection, anti-receptor binding domain immunoglobin G was detected in 24 women (65%) and anti-nucleocapsid was detected in 26 women (70%). Mother-to-neonate transfer of anti-SARS-CoV-2 antibodies was significantly lower than transfer of anti-influenza hemagglutinin A antibodies (mean [SD] cord-to-maternal ratio: anti-receptor binding domain immunoglobin G, 0.72 [0.57]; anti-nucleocapsid, 0.74 [0.44]; anti-influenza, 1.44 [0.80]; P < .001). Nonoverlapping placental expression of SARS-CoV-2 receptors angiotensin-converting enzyme 2 and transmembrane serine protease 2 was noted. Conclusions and Relevance: In this cohort study, there was no evidence of placental infection or definitive vertical transmission of SARS-CoV-2. Transplacental transfer of anti-SARS-CoV-2 antibodies was inefficient. Lack of viremia and reduced coexpression and colocalization of placental angiotensin-converting enzyme 2 and transmembrane serine protease 2 may serve as protective mechanisms against vertical transmission.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Fetal Blood/immunology , Immunity, Maternally-Acquired/immunology , Infectious Disease Transmission, Vertical/statistics & numerical data , Placenta/metabolism , Pregnancy Complications, Infectious/immunology , SARS-CoV-2/immunology , Adult , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/blood , COVID-19/transmission , COVID-19 Serological Testing , Case-Control Studies , Cohort Studies , Coronavirus Nucleocapsid Proteins/immunology , Female , Fetal Blood/virology , Humans , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Infant, Newborn , Influenza A virus/immunology , Male , Phosphoproteins/immunology , Placenta/pathology , Placenta/virology , Pregnancy , Pregnancy Complications, Infectious/blood , Prospective Studies , RNA, Viral/metabolism , Receptors, Coronavirus/metabolism , Serine Endopeptidases/metabolism , Severity of Illness Index , Spike Glycoprotein, Coronavirus/immunology , Viral Load
8.
J Pediatr ; 227: 45-52.e5, 2020 12.
Article in English | MEDLINE | ID: covidwho-872293

ABSTRACT

OBJECTIVES: As schools plan for re-opening, understanding the potential role children play in the coronavirus infectious disease 2019 (COVID-19) pandemic and the factors that drive severe illness in children is critical. STUDY DESIGN: Children ages 0-22 years with suspected severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection presenting to urgent care clinics or being hospitalized for confirmed/suspected SARS-CoV-2 infection or multisystem inflammatory syndrome in children (MIS-C) at Massachusetts General Hospital were offered enrollment in the Massachusetts General Hospital Pediatric COVID-19 Biorepository. Enrolled children provided nasopharyngeal, oropharyngeal, and/or blood specimens. SARS-CoV-2 viral load, ACE2 RNA levels, and serology for SARS-CoV-2 were quantified. RESULTS: A total of 192 children (mean age, 10.2 ± 7.0 years) were enrolled. Forty-nine children (26%) were diagnosed with acute SARS-CoV-2 infection; an additional 18 children (9%) met the criteria for MIS-C. Only 25 children (51%) with acute SARS-CoV-2 infection presented with fever; symptoms of SARS-CoV-2 infection, if present, were nonspecific. Nasopharyngeal viral load was highest in children in the first 2 days of symptoms, significantly higher than hospitalized adults with severe disease (P = .002). Age did not impact viral load, but younger children had lower angiotensin-converting enzyme 2 expression (P = .004). Immunoglobulin M (IgM) and Immunoglobulin G (IgG) to the receptor binding domain of the SARS-CoV-2 spike protein were increased in severe MIS-C (P < .001), with dysregulated humoral responses observed. CONCLUSIONS: This study reveals that children may be a potential source of contagion in the SARS-CoV-2 pandemic despite having milder disease or a lack of symptoms; immune dysregulation is implicated in severe postinfectious MIS-C.


Subject(s)
COVID-19 , Adolescent , Age Factors , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/immunology , COVID-19/transmission , COVID-19 Testing , Child , Child, Preschool , Comorbidity , Female , Humans , Infant , Infant, Newborn , Male , Massachusetts/epidemiology , Pandemics , Severity of Illness Index , Viral Load , Young Adult
9.
BMC Med Res Methodol ; 20(1): 228, 2020 09 11.
Article in English | MEDLINE | ID: covidwho-751240

ABSTRACT

BACKGROUND: COVID-19, the disease caused by the highly infectious and transmissible coronavirus SARS-CoV-2, has quickly become a morbid global pandemic. Although the impact of SARS-CoV-2 infection in children is less clinically apparent, collecting high-quality biospecimens from infants, children, and adolescents in a standardized manner during the COVID-19 pandemic is essential to establish a biologic understanding of the disease in the pediatric population. This biorepository enables pediatric centers world-wide to collect samples uniformly to drive forward our understanding of COVID-19 by addressing specific pediatric and neonatal COVID-19-related questions. METHODS: A COVID-19 biospecimen collection study was implemented with strategic enrollment guidelines to include patients seen in urgent care clinics and hospital settings, neonates born to SARS-CoV-2 infected mothers, and asymptomatic children. The methodology described here, details the importance of establishing collaborations between the clinical and research teams to harmonize protocols for patient recruitment and sample collection, processing and storage. It also details modifications required for biobanking during a surge of the COVID-19 pandemic. RESULTS: Considerations and challenges facing enrollment of neonatal and pediatric cohorts are described. A roadmap is laid out for successful collection, processing, storage and database management of multiple pediatric samples such as blood, nasopharyngeal and oropharyngeal swabs, sputum, saliva, tracheal aspirates, stool, and urine. Using this methodology, we enrolled 327 participants, who provided a total of 972 biospecimens. CONCLUSIONS: Pediatric biospecimens will be key in answering questions relating to viral transmission by children, differences between pediatric and adult viral susceptibility and immune responses, the impact of maternal SARS-CoV-2 infection on fetal development, and factors driving the Multisystem Inflammatory Syndrome in Children. The specimens in this biorepository will allow necessary comparative studies between children and adults, help determine the accuracy of current pediatric viral testing techniques, in addition to, understanding neonatal exposure to SARS-CoV-2 infection and disease abnormalities. The successful establishment of a pediatric biorepository is critical to provide insight into disease pathogenesis, and subsequently, develop future treatment and vaccination strategies.


Subject(s)
Betacoronavirus , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Specimen Handling/methods , Adolescent , COVID-19 , Child , Child, Preschool , Coronavirus Infections/immunology , Coronavirus Infections/transmission , Female , Fetal Development , Hospitalization , Humans , Infant , Infant, Newborn , Male , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/transmission , SARS-CoV-2
10.
BMC Med Res Methodol ; 20(1): 215, 2020 08 26.
Article in English | MEDLINE | ID: covidwho-730204

ABSTRACT

BACKGROUND: Collection of biospecimens is a critical first step to understanding the impact of COVID-19 on pregnant women and newborns - vulnerable populations that are challenging to enroll and at risk of exclusion from research. We describe the establishment of a COVID-19 perinatal biorepository, the unique challenges imposed by the COVID-19 pandemic, and strategies used to overcome them. METHODS: A transdisciplinary approach was developed to maximize the enrollment of pregnant women and their newborns into a COVID-19 prospective cohort and tissue biorepository, established on March 19, 2020 at Massachusetts General Hospital (MGH). The first SARS-CoV-2 positive pregnant woman was enrolled on April 2, and enrollment was expanded to SARS-CoV-2 negative controls on April 20. A unified enrollment strategy with a single consent process for pregnant women and newborns was implemented on May 4. SARS-CoV-2 status was determined by viral detection on RT-PCR of a nasopharyngeal swab. Wide-ranging and pregnancy-specific samples were collected from maternal participants during pregnancy and postpartum. Newborn samples were collected during the initial hospitalization. RESULTS: Between April 2 and June 9, 100 women and 78 newborns were enrolled in the MGH COVID-19 biorepository. The rate of dyad enrollment and number of samples collected per woman significantly increased after changes to enrollment strategy (from 5 to over 8 dyads/week, P < 0.0001, and from 7 to 9 samples, P < 0.01). The number of samples collected per woman was higher in SARS-CoV-2 negative than positive women (9 vs 7 samples, P = 0.0007). The highest sample yield was for placenta (96%), umbilical cord blood (93%), urine (99%), and maternal blood (91%). The lowest-yield sample types were maternal stool (30%) and breastmilk (22%). Of the 61 delivered women who also enrolled their newborns, fewer women agreed to neonatal blood compared to cord blood (39 vs 58, P < 0.0001). CONCLUSIONS: Establishing a COVID-19 perinatal biorepository required patient advocacy, transdisciplinary collaboration and creative solutions to unique challenges. This biorepository is unique in its comprehensive sample collection and the inclusion of a control population. It serves as an important resource for research into the impact of COVID-19 on pregnant women and newborns and provides lessons for future biorepository efforts.


Subject(s)
Betacoronavirus , Coronavirus Infections/diagnosis , Coronavirus Infections/psychology , Patient Participation , Pneumonia, Viral/diagnosis , Pneumonia, Viral/psychology , Pregnancy Complications, Infectious/diagnosis , Specimen Handling , Adult , COVID-19 , Female , Humans , Infant, Newborn , Pandemics , Patient Selection , Perinatal Care , Pregnancy , Pregnancy Complications, Infectious/psychology , SARS-CoV-2
11.
Res Sq ; 2020 Aug 10.
Article in English | MEDLINE | ID: covidwho-724933

ABSTRACT

Background : COVID-19, the disease caused by the highly infectious and transmissible coronavirus SARS-CoV-2, has quickly become a morbid global pandemic. Although the impact of SARS-CoV-2 infection in children is less clinically apparent, collecting high-quality biospecimens from infants, children and adolescents in a standardized manner during the COVID-19 pandemic is essential to establish a biologic understanding of the disease in the pediatric population. This biorepository enables pediatric centers world-wide to collect samples in a standardized manner to drive forward our understanding of COVID-19 by addressing specific pediatric and neonatal COVID-19-related questions. Methods : A broad study was implemented with strategic enrollment guidelines to include patients seen in urgent care clinics and hospital settings, neonates born to SARS-CoV-2 infected mothers, and asymptomatic children. The methodology described here, details the importance of establishing collaborations between the clinical and research teams to harmonize protocols for patient recruitment and sample collection, processing and storage. Results : Considerations and challenges facing enrollment of neonatal and pediatric cohorts are described. A roadmap is laid out for successful collection, processing, storage and database management of multiple pediatric samples such as blood, nasopharyngeal and oropharyngeal swabs, sputum, saliva, tracheal aspirates, stool, and urine. Using this methodology, we enrolled 327 participants, who provided a total of 972 biospecimens. Conclusions : Pediatric biospecimens will be key in answering questions relating to viral transmission by children, differences between pediatric and adult viral susceptibility, and, immune responses, the impact of maternal SARS-CoV-2 infection on fetal development, and factors driving the Multisystem Inflammatory Syndrome in Children. The specimens in this biorepository will allow necessary comparative studies between children and adults, help determine the accuracy of current pediatric viral testing techniques, in addition to, understanding neonatal exposure to SARS-CoV-2 infection and disease abnormalities. The successful establishment of a pediatric biorepository is critical to provide insight into disease pathogenesis, and subsequently, develop future treatment and vaccination strategies.

SELECTION OF CITATIONS
SEARCH DETAIL